110 research outputs found

    Disassembly and Reassembly Sequence Planning Tradeoffs Under Uncertainty for Product Maintenance

    Get PDF
    The problem addressed in this paper is disassembly sequence planning for the purposes of maintenance or component upgrading, which is an integral part of the remanufacturing process. This involves disassembly, component repair or replacement, and reassembly. Each of these steps incurs cost as well as the probability of damage during the process. This paper presents a method for addressing these tradeoffs, as well as the uncertainty associated with them. A procedure for identifying the best sequence of disassembly operations for maintenance and/or component upgrade is presented. It considers both disassembly and reassembly costs and uncertainties. Graph-based integer linear programming combined with multi-attribute utility analysis is employed to identify the best set of tradeoffs among (a) disassembly time (and resulting cost) under uncertainty, (b) the probability of not incurring damage during disassembly, (c) reassembly time (and resulting cost), and (d) the probability of not incurring damage during reassembly. An example of a solar heating system is used to illustrate the method

    Immersive Computing Technology to Investigate Tradeoffs Under Uncertainty in Disassembly Sequence Planning

    Get PDF
    The scientific and industrial communities have begun investigating the possibility of making product recovery economically viable. Disassembly sequence planning may be used to make end-of-life product take-back processes more cost effective. Much of the research involving disassembly sequence planning relies on mathematical optimization models. These models often require input data that is unavailable or can only be approximated with high uncertainty. In addition, there are few mathematical models that include consideration of the potential of product damage during disassembly operations. The emergence of Immersive Computing Technologies (ICT) enables designers to evaluate products without the need for physical prototypes. Utilizing unique 3D user interfaces, designers can investigate a multitude of potential disassembly operations without resorting to disassembly of actual products. The information obtained through immersive simulation can be used to determine the optimum disassembly sequence. The aim of this work is to apply a decision analytical approach in combination with immersive computing technology to optimize the disassembly sequence while considering trade-offs between two conflicting attributes: disassembly cost and damage estimation during disassembly operations. A wooden Burr puzzle is used as an example product test case. Immersive human computer interaction is used to determine input values for key variables in the mathematical model. The results demonstrate that the use of dynamic programming algorithms coupled with virtual disassembly simulation is an effective method for evaluating multiple attributes in disassembly sequence planning. This paper presents a decision analytical approach, combined with immersive computing techniques, to optimize the disassembly sequence. Future work will concentrate on creating better methods of estimating damage in virtual disassembly environments and using the immersive technology to further explore the feasible design space

    Leveraging Virtual Reality Experiences With Mixed-Integer Nonlinear Programming Visualization of Disassembly Sequence Planning Under Uncertainty

    Get PDF
    Disassembly sequence planning at the early conceptual stage of design leads to enormous benefits including simplification of products, lower assembly and disassembly costs, and design modifications which result in increased potential profitability of end-of-life salvaging operations. However, in the early design stage, determining the best disassembly sequence is challenging. First, the required information is not readily available and very time-consuming to gather. In addition, the best solution is sometimes counterintuitive, even to those with experience and expertise in disassembly procedures. Integrating analytical models with immersive computing technology (ICT) can help designers overcome these issues. A two-stage procedure for doing so is introduced in this paper. In the first stage, a stochastic programming model together with the information obtained through immersive simulation is applied to determine the optimal disassembly sequence, while considering uncertain outcomes, such as time, cost, and the probability of causing damage. In the second stage, ICT is applied as a tool to explore alternative disassembly sequence solutions in an intuitive way. The benefit of using this procedure is to determine the best disassembly sequence, not only by solving the analytic model but also by capturing human expertise. The designer can apply the obtained results from these two stages to analyze and modify the product design. An example of a Burr puzzle is used to illustrate the application of the method

    Broadening Participation: A Report on a Series of Workshops Aimed at Building Community and Increasing the Number of Women and Minorities in Engineering Design

    Get PDF
    Despite some progress in increasing the numbers of women and minorities in engineering over the past 30 years, their full participation in the discipline has yet to be achieved, particularly in engineering academia. One cause is the leaky pipeline ; even after women and minorities choose to major in engineering, they drop out at rates higher than their counterparts along all career stages (undergraduate school, graduate school, tenure-track, etc.). Their small numbers creates isolation that has the unfortunate risks of struggle, less professional success, less sense of personal belonging, and less retention. Our hypothesis is that building a community that provides networking and support, opportunities for collaboration, and professional development, will lead to greater career success, personal fulfillment and professional happiness, retention, and greater participation/contribution from women and minorities. The authors have been conducting a series of workshops aimed at broadening participation of women and other minorities within the American Society of Mechanical Engineers (ASME) Design Engineering Division (DED). This paper reports on the activities and results of the workshop series. Pre-workshop survey data indicated a clear opportunity to address the unmet needs of underrepresented groups in the ASME DED. Post-workshop survey data showed success in attendee satisfaction with feelings of inclusion and community, professional skill building, and the prospect of future workshops held by the committee. A follow-up impact assessment survey showed that the workshops have led to greater participation in DED activities, new positive connections within the DED community, and positive feelings regarding their communication/collaboration abilities, self confidence, level of comfort, feelings of inclusion, professional goals, leadership abilities, and skill sets. While these results are encouraging, the committee feels strongly that greater success in broadening the participation of underrepresented groups in engineering would be possible by sharing our strategies and successes, and learning from others with similar experience creating communities within the many engineering disciplines represented in ASEE

    Multi-compartment profiling of cacterial and host metabolites identifies intestinal dysbiosis and its functional consequences in the critically ill child

    Get PDF
    Adverse physiology and antibiotic exposure devastate the intestinal microbiome in critical illness. Time and cost implications limit the immediate clinical potential of microbial sequencing to identify or treat intestinal dysbiosis. Here, we examined whether metabolic profiling is a feasible method of monitoring intestinal dysbiosis in critically ill children. Prospective multicenter cohort study. Three U.K.-based PICUs. Mechanically ventilated critically ill (n = 60) and age-matched healthy children (n = 55). Collection of urine and fecal samples in children admitted to the PICU. A single fecal and urine sample was collected in healthy controls. Untargeted and targeted metabolic profiling using 1H-nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry or urine and fecal samples. This was integrated with analysis of fecal bacterial 16S ribosomal RNA profiles and clinical disease severity indicators. We observed separation of global urinary and fecal metabolic profiles in critically ill compared with healthy children. Urinary excretion of mammalian-microbial co-metabolites hippurate, 4-cresol sulphate, and formate were reduced in critical illness compared with healthy children. Reduced fecal excretion of short-chain fatty acids (including butyrate, propionate, and acetate) were observed in the patient cohort, demonstrating that these metabolites also distinguished between critical illness and health. Dysregulation of intestinal bile metabolism was evidenced by increased primary and reduced secondary fecal bile acid excretion. Fecal butyrate correlated with days free of intensive care at 30 days (r = 0.38; p = 0.03), while urinary formate correlated inversely with vasopressor requirement (r = -0.2; p = 0.037). Disruption to the functional activity of the intestinal microbiome may result in worsening organ failure in the critically ill child. Profiling of bacterial metabolites in fecal and urine samples may support identification and treatment of intestinal dysbiosis in critical illness.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
    corecore